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ABSTRACT

A large number of elastic wave problems which involve one space
variable are treated, in a unified manner, by a system of second-order
hyperbolic partial differential equations, with the generalized
displacements as dependent variables. This system of n equations
is analyzed by the method of characteristics, yielding closed form
equations for the physical characteristics, the characteristic equations,
and the propagation of discontinuities, Procedures for numerical inte-
gration along the characteristic curves are established. Among the
elastic wave problems that may be represented by this unified approach
are the Timoshenko beam, plates, bars, and sheets, all including the
lateral inertia and shear effects. Various approximate shell equations
may also be represented. Results of numerical calculations are in

agreement with those obtained by other methods.
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SYMBOLS
¢, - bar velocity = (E/p)'/?
¢y - dilatational (or irrotational) velocity = {(HZG)/p}I/2
. . . : . 1/2
Co - equivoluminal (or distortional) velocity = (G/p)

c. = general wave velocities as defined in text

< - plate velocity = {E/p(l-\az)}ll2
¢, - shear velocity = kce
D - flexural rigidity = Eh3/12(1-v?)

E - Modulus of Elasticity

G =~ Shear Modulus = E/2(1+v)

k™ - shear correction factor

M - bending moment

N - normal stress resultant averaged across sheet
P - bar stresses

Q - shear stress resultant

r - radial distance
Si - generalized stresses
t - time

u, - generalized displacements

v - Poisson's ratio

o - density

A - Lame Constant of Elasticity = vE/(1+v)(1-2v)
a, <.y A.., bi - coefficients as defined in text

ij* "ij’ "ij

[] - bracket represents jump in the enclosed variable
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A UNIFIED APPROACH TO ONE-DIMENSIONAL ELASTIC WAVES BY THE METHOD
OF CHARACTERISTICS

by Pei Chi Chou and Richard W. Mortimer

I, INTRODUCTION

In the theoretical analysis of the elastic wave propagation there
are in general three methods available; namely, the Laplace transform
method, the method of mode superposition, and the method of character-
istics., Due to inversion difficulties the Laplace transform method is
usually limited to simple wave equations. In the method of mode
superposition, the phase velocity of different fundamental modes of
motion at different wave lengths can be calculated for steady wave motion.
However, it is not suitable for the study of transient problems with
prescribed initial and boundary conditions, especially for those inputs
involving steep wave fronts. On the other hand, from the method of
characteristics many important features, such as the wave propagation
velocities and the equation governing the propagation of discontinuities,
can be obtained in closed form without any difficulty,

The governing equations, either exact or approximate, for linear
wave motions can be expressed as equations of motion in terms of dis-
placement components; this will be called the displacement formulation.
Alternatively, the governing equations can be expressed as the equations
of motion in terms of displacements and stresses, along with the stress-
displacement relations; this will be called the stress-displacement for-
mulation. In the displacement formulation the governing equations are
second order equations; while in the stress-displacement formulation
the governing equations are first order equations. Because the boundary
conditions are sometimes prescribed in terms of stress, it has heen

customary in the application of the method of characteristics to use the



stress-displacement formulation, such as in References 1 to 4, It will

be shown in this paper that the displacement formulation is much more

useful, The wave velocities, as well as the parameters that govern the

propagation of discontinuities, appear explicitly in the equations of the

displacement formulation,

This paper begins with a general mathematical study of a system of
n hyperbolic second-order differential equations with two independent
variables, The physical characteristics, as well as the characteristic
equations, are derived. The equations governing the propagation of
discontinuities in the first derivatives of the dependent variables are
also established., A numerical procedure is thendeveloped for the calculation
of the distribution of the dependent variables behind the wave fronts for
problems with two distinct wave speeds. The procedures for numerical
integration for problems involving one displacement variable are quite well
known; e.g., recently, in [1], a numerical procedure has been applied to
the cylindrical and spherical wave problems., Leonard and Budiansky [2]
have solved the wave propagation in a Timoshenko beam which involves two
displacement variables. However, they only treated the case where the
two wave speeds are equal, Plass [3] solved the Timoshenko beam problem
with two different wave speeds; but he did not include any loading which
excites a discontinuity along the slower of the two wave fronts. The
procedure developed in this paper, which is an improved version of that
given in [4], can handle discontinuities across both the first and the
second wave fronts, |
It is shown that a large number of elastic wave problems can be

treated as special cases of the general mathematical problem with n

governing equations. The n dependent variables in each of the elastic




wave problems are generalized displacements. Among the examples with
one displacement variable are simple dilatational and irrotational waves
in cylindrical or spherical coordinates, Problems with two displacement
variables include: the Timoshenko beam [5], the motion of a plate incor-
porating shear effect and rotary inertia by Uflyand [6] and Mindlin [7],
the corresponding bar problem incorporating lateral inertia by Mindlin
and Herrmann [8], and the sheet problem by Kane and Mindlin [9].
Numerical calculations were performed for many of the n = 2 problems and
the results comnared with known solutions.

Examples of problems with three displacement variables (n = 3) include
the various theories for thin cylindrical shells, [10], [11], and [12].
For n = 4, we have the thick cylindr_ical shell equations, such as those
derived by Mirsky and Herrmann [13]. For n = 6, we have the problem

of wave propagation in helical springs by Wittrick [14].



11, METHOD OF CHARACTERISTICS FOR A SYSTEM OF SECOND ORDER EQUATIONS

A. Physical Characteristics and Characteristic Equations

Let us consider the following system of n second order partial
differential equations for the n dependent variables u; and two inde-

pendent variables, x and t,

azui 1 azui n du,
- - = I (a,.u, +B8,,=—L) = R, (1)
3x2 2 at2 je1 o X3 1) x 1

1

i=1,2,3, .,..n

where ci» uij and Bij are continuous, and functions of x only. (The
Einstein summation convention will not be used in this paper,) We

shall limit our discussions to continuous functions us, although the
derivatives of u, may be discontinuous., For regions in the physical
plane (x,t-plane) where the first partial derivatives of u, are con-

tinuous, we may write

9 3 .

d(ul,x) = % (Ui.x) dx + 3T (ui.x) dt iLG=1,2, «..n) (2)

d(u ) = 3 (u ) dx + .2._ (u ) dt (i=1,2 n) (3)

i,t ax i,t ot i,t ) Ly s
vwhere

Ju. Ju
u = .__1- u = —_
1,x 3x ’ i,t at

Equations (1) to (3) form a system of 3n hyperbolic equations which may
be used to solve for the 3n second derivatives of us, if the distribution

of u;, together with their first derivatives are known along a certain curve.




Along certain directions in the physical plane, however, the specification

of Uy Up o and u; . produces solutions which are of indeterminate form.
] »

These directions will be called characteristic directions, and lines

along these directions will be called the physical characteristics, or

simply characteristics,

except for the case of constant Cs» where the characteristics are

straight lines,

of u, may be discontinuous.

Across these characteristics, the second derivatives

Solving the system of 3n equations, (1) to (3), for azul/ax2 ,

obtain
where
1 0
dx dt
0 dx
0 0
0 0
M =
0 0
0
0
0

32u1 ) N1

ax2 S
-1/¢2 0 0
0 0 0
dt 0 0
0 1 0
0 dx dt
0 0 dx

dx

dt

dx

1/c2
l/cn

dt

In general, the characteristics are curved lines

we

(4)

(5)



and

R, 0 -1/c§ 0 o0 0 cee 0 0 0
d(ul’x) dt 0 0 o vee 0
d(ul't) dx dt 0 vee 0

2
R, 0 0 1 0 -1/¢2 0 . 0
g (6)
d(uz,t) 0 0 0 dx dt 0 e 0
-1/e2

R 0 0 cen 1 0 1/¢2
d(un,x) 0 0 eee dx dt 0
d(un't) 0 0 vee 0 dx dt

This second derivative is indeterminate if both M and Nl vanish, The
vanishing of M yields, after applying the Laplace expansion technique

for determinants,
2 . (9%y27 .2 o (9X)2 2 _ (9%27 .
{el - @GP (e - P oo e - (G@PF) 0 (7

The vanishing of each of the braces in (7) leads to two families of
physical characteristics, e.g., from the first brace,

dx . 4
It =%

which will be called the C: and C; characteristics., Altogether, (7)
produces 2n families of physical characteristics CI and C; , Where

+ -
along ci and ci »

a-i- = * ¢, (8)

respectively,




It is customary to call the ci's the wave velocities,

The vanishing of N, yields
2 2 _ 2 . (9%y2 2 . (9%2y ,
{°1R1(dt) d(ul’x)dx + d(ul’t)dt} {c2 (dt } e {cn dt) }=0 9)

Assuming that <, is not equal to any other C;» we observe from (9) that

along the directions dx/dt = tc, ,

d(ul.t) + cl(dul'x) + clkldx = 0 (10)

These two will be called the characteristic equations along the C: and
CI characteristics, respectively. It can be shown by a limiting process

that (10) is true even when c, is equal to one or more of the other ci's.

1
The solution for aZui/ax 2 from eqs. (1) to (3) yields the characteristic
equations

d(ui,t) + cid(ui,x) + ciRidx = 0, i=1,2, ...n (11)

along (dx/dt) = tci, respectively, The vanishing of the denominators

and numerators of the solutions of azﬁi/axat and azui/at2 yields identical
results as (8) and (11). Since only continuous u; are being considered,
we may write

dui = u, dx + u, .dt , i=1,2, ...n (12)

along any direction., In regions in the physical plane where the first
derivatives of u, are continuous, (11) and (12), which consist of 3n
equations, may be used to solve for the 3n variables u,, u. , and u, _,

i*? Ti,x i,t

if proper boundary and initial conditions are specified,



B, Propagation of Discontinuities

Along the physical characteristics, the variables Uiy Up oy and
’

u, . are governed by the characteristic equations (11), Across the
L

physical characteristics, the second derivatives of u, may be discontinuous; d

these discontinuities do not affect the applicability of (11), which does
not contain second derivatives of u.. Discontinuities in the first
derivatives of u; may also exist across the physical characteristics,

but these will not be governed by (11). Discontinuities in ui,x and

u. . occur when a finite step input (or jump input) in these variables

i,t
is applied at a particular x. The equations for the propagation of these
discontinuities will now be derived.

First, let us demonstrate that lines of discontinuity in the first
derivatives of u; are necessarily characteristics. Consider a line DE
that is not a characteristic. Assume that discontinuities in the first
derivatives of u, exist across DE, or between FG and DE when FG -+ DE,
as shown in Fig, 1, Further assume that within each of the two regions
divided by DE, all functions are continuous. Integration of (11), with

lower signs, along any C; characteristic from A to B, where A is a point

on DE, yields

B B
U, e (B) -y (A + JA c;d (u; ) = JA ¢jRydx (13)
If we allow FG to approach DE, and B to approach A, (13) becomes

[oi0d * & E‘i.’;] = 0 (14)
where the bracket designates the value of discontinuity (or jump) in

the variable it encloses, e.g.,

Exi';] = ui,t(B) - ui,t(A)' as B+ A




In writing (14) we also assumed that Ri is bounded and c; continuous;
therefore, the right hand side of (13) vanishes as dx approaches zero.

Integration along C;, as C approaches A, yields

) -5 [l - 0

Combining (14) and (15), we obtain

Fidd = [l =0
From this we conclude that discontinuities of first derivatives cannot
exist across a line that is not a characteristic,
Now, let us consider discontinuities in ui,x and ui,t across one
particular characteristic, C;, where < is not equal to any other ci’S.
Write (11), with the lower signs, and integrate it along the Ci

characteristic from A to B, as shown in Fig, 2, As B approaches A,

or as C; (2) approaches C; (1), we have

E‘k,t] + o [:uk.x] = 0 (16)

Integration from C; (1) to C; (2) along the other C; characteristics

yields the same results, or

+ )
EEi'é] tcy [:;i,;] = 0 across Ck s i=1,2, .oun (17)

. . + s s

Since ¢, is not equal to any of the other ci's, every CZ characteristic
. . . + P

passing through point A must intersect the Ck (2) characteristic, where

£=1,2, ... k=1, k+1, ... n. Integration along CZ gives

[{ll,t] - Cp Elt‘;l = 0 across C': , L #Kk (18)

Combining (17) and (18), and assuming that Cor Up o» and u, . are
» ]

continuous along C; (2), we obtain

+
E’f—.t-_] = [ul.;’ = 0 across C; ; £=1, 2, ... k-1, k+1, ..o n (19)
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+
ki

£ # k, cannot exist, Thus, discontinuities in u

This indicates that across C discontinuities in uZ ¢ and u
]

£2,x?

and u are not

k,t k,x

coupled with discontinuities in other u; . and L) therefore they can
’ »

be treated separately.
The relations governing the magnitude of the jumps [uk -J andl:uk ] across C.
»X st k
as they propagate along C; are obtained by writing (11) twice, both with
the upper signs, once along C; (2) and the other along C; (1), and

subtracting one from the other, Thus, as C; (2) approaches C; (1), we

have
n
d[uk,t] B dfuk,x] = oo 5k oy [uj] * By [uj.x]} dx (20)

Since u, are continuous throughout, [ﬁj] = 0 , by inserting (16) into

(20), and utilizing (19), we obtain

de
X
[, o 2wy = Byl Jax (21)
or

dlu, ] d
.__l(.ﬁ.(_.. l{B dx - e— }

[uk s x] 2 kk Ck

This may be integrated to give

- =1/2 +
[uk,xJ L exp I(Bkk/Z) dx , along C 22)
where Kk is a constant, From (22) and (16), we have
+
[uk,t] = -Kk ckl/2 exp J(Bkk/Z) dx , along Ck (23)

Following the same procedure, it can be shown that the propagation along C;

of discontinuities is governed by

[hk,;l = K cil/z exp I(Bkk/z) dx

along Cy (24)
[uk,t] = K ckl/2 exp J(skk/z) dx
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C. Problems with Two of the c;j's Equal

If two of the ci's are equal, (22) to (24) are not applicable.

;*1 coincides with C; and

; the equations governing thejumps [u, ] and [u will
k k,x k,t

Let us assume Cxel equal to Sy s then C

c with C

k+1
be derived below, Following the same procedure as in the previous

section, it can be shown that (17) and the corresponding equations for

Ck are still valid in the present case, or,

Eui.t—_l * ¢, Exi'x] = 0 i=1,2, ...n (25)

where the upper sign is for discontinuities across C; and the lower
sign for those across C; , respectively, Furthermore, analogous to (19},

we can show that

[up ] = [u, g =0 across C‘: and C,
’ »
Lg 1. 2. se e k"l' k’z. seeh (26)

In place of (20), the following equations may be written
Aoy 1% o dlm I = 3t lmy (] 8, [u,, Jdx (27)
d[“lml,t o dE“k*-l,:;l = ¢ ‘:k{Bst:“k,x—-| * Bu[-"kd,x]} dx (28)
where
By =Bk v B "B ker s By T Brark e By T Brag ik (29)

Eliminating [uk,t] and [uk+1,t] from (27) and (28) by using the two
equations obtained from (25) with i = k and i = k+1, respectively, and

solving the resulting two equations for [@k ;], we obtain
]
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d
d2 d 1 1 “x P11 Py 4
b J e g@  cm -7 &M
dx? ’ 2 k
2
= dck + .8_2.{‘_1_( 1\-0- 1 de 81 B“ }dck
) X
2¢, dx2 2 dx "B,c, zckzsz dx 2¢, B, ZBch dx
8 8 8,8 8.8
2 d 1 273 471
TR G T T >[uk,x] =0 (30)

This second order equation for [bk g] may be integrated readily if the
»
values of [u o andl?k*ng at one point are given, since the value of
1]
g;- [@k x] at this point can be obtained from (27) and (25). Once
1

[u, ,] has been determined, [u, ] may be obtained from (25).
» »

D. Generalized Stresses

In stress wave problems, the functions ug correspond to generalized

displacement variables and the u, correspond to generalized velocities,
’

1,t
as will be shown in a later section. In these problems, certain
generalized stress variables are also of practical importance and some

of these stress variables may be prescribed as boundary conditions,

The generalized stresses will be designated as Sm and are defined as
n
S = bm u + L a .u, m=1, 2, ... (31)

In a given problem the number of generalized stresses Sm is either equal
to, or greater than, the number of generalized displacements u;
although the number of Sm that can be prescribed as boundary conditions
is usually equal to the number of generalized displacement.

When there are jumps in um,x » the generalized stresses will also
have jumps, Consider the case of a jump in um,x across a C; (or C;)

characteristic, Writing (31) twice along the two sides of this

characteristic and subtracting one from the other, we obtain

+ -
[Sm] = b [um,x] across C_or C_, n=1, 2, ... 52

where the conditions of EH] = 0 are used. The variation of [§ ] as it
propagates along C; or C; may be obtained from (32), (22), and (24); or from

(32) and (30).




E. Initial and Boundary Conditions

The governing equations (1) are of second order in both x and t;
therefore, two initial conditions and two boundary conditions must be
specified for each of the variables u; . The specification of all
u

and uy functions along the initial line t = 0 constitutes a

i,x st

properly posed initial condition. Note that the specification of ui’
along the initial line t = 0 is equivalent to specifying uy along
t =0,

Along each of the boundary lines x = X and x = X,, one boundary
condition for each uy must be specified, One properly posed boundary
condition is to specify all ui's along x = x, and x = X, Any of the
generalized stress, instead of the corresponding displacement, may also
be specified along these lines. For a particular value of i, say i =k,
either u, or Sk’ but not both, may be specified., If the number of
generalized stresses is greater than n, usually only n of the stresses
can be prescribed as boundary conditions, the rest are not feasible from
a practical engineering point of view,

Properly posed initial and boundary conditions are those which assure

a unique solution of the equations, Uniqueness of solutions to eqs. (1)

will be discussed in another paper.

111 NUMERICAL PROCEDURES

Once the characteristic equations of a system of hyperbolic
differential equations are known, they can be integrated readily by
numerical means., For linear equations, the numerical integration is
equivalent to a straight forward solution of simultaneous algebraic
equations and involves no iteration process, We shall limit our discussion
to numerical procedures for the case of two dependent variables (n = 2) and

constant wave velocities.

13
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A. Continuous Boundary Conditions

In this section we shall establish the procedure for the calculation
of regions where u, and u, have continuous first derivatives. The general

case of n = 2 and < ¥ c, will be considered; whereas problems with €} = €y

and those with n = 1 can be treated as special cases without any difficulty.

In performing the numerical calculations, the physical plane is
first divided into a network by the characteristic lines; the character-
istic and continuity equations are then written in finite-difference
form in terms of the values of the dependent variables at the mesh points
of the network., For problems with n = 2, there are four families of
characteristic lines in the physical plane, with each characteristic
intersecting every one of the other three characteristic families., The
resulting network contains too many irregular mesh points to be practical
for numerical calculations, For simplicity, only C; and C; character-

istics are used as the main network, where ¢, > c,, as shown in Fig. 3;

2
and only at the mesh points of this network will the dependent variables

be calculated, Values of the variables u , u

1 u,, u2,x’ and

1,x* ul,t’
u2,t at a typical interior point 1 may be calculated if the corresponding
values at neighboring points 2, 3, and 4 are known from previous calculations,
To accomplish this, draw C; and C; characteristics from point 1, inter-
secting the C; and C; characteristics that pass through point 4 at points

5 and 6, respectively. Values of the variables at points 5 and 6 are

obtained from those at points 2, 3, and 4 by linear interpolation. The

finite-difference form of the characteristic equation (11), with i =1

and the upper signs, is

{ul,t(l) - ul,t(Z)} - cl{ul.x(l) - ul‘x(Z)}

= -c, 2 {alj(l,Z) uj(l,Z) + sljm,z) uj.x(l,Z)} {x(1) - x(2)}

along %% =c (33)

1




where a single numeral in a parenthesis indicates the point at which

the variable is evaluated, a double numeral within a parenthesis
designates the average of the variable between the two points, Three
other finite-difference equations may be written for the characteristic
equations along CI between points 1 and 3, along C; between points 1

and 5, and along C; between 1 and 6, These finite-difference character-

istic equations may be written as

2
Afu, ) % c. A(u, Y tc, I (o,.u, +8..u, )A(Xx)=0
i,t i i,x i §=1 ij ij j,x (34)
dx
along T he ¢

where A( ) represents difference, and a bar over a letter designates

average,

The continuity equation for u, and u, are written in finite-difference

form along C; and C; , respectively, as
ul(l) - u1(3) = ul.x(1,3) {x(1) - x(3)} + ul.t(l,S) {t(1) - t(3)} (35)
uz(l) - u2(6) = uz,x(l’6) {x() - x(6)} + uz,t(1'6) {t(1) - t(6)} (36)

The four characteristic equations together with the two continuity equations,

(35) and (36), constitute six equations for the six unknowns U, U o
’

uz,x’ and u at point 1,

u
1,t* Y2 2,t

For mesh points on the left boundary line x = X two of the
characteristics, C: and C;, are absent, If u and u, are specified along

x = x , the remaining four equations are sufficient for finding the

1'

, and u

remaining four unknowns u If S1 and 82 are

u u
1,x’ "1,t? "2,x 2,t’

specified along x = x,, then the two finite-difference equations obtained

from (31) with m = 1 and m = 2, replace the finite-difference characteristic

. + . :
equations along C; and C,, and the system of six equations necessary for the

determination of the six variables is again complete.

15
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B. Discontinuities in the First Derivatives

When the input at x = X, involves discontinuities (jumps) in Uy .o
»

. R + . R
Uy 49 OT 5, these discontinuities propagate along the C1 line, which
’

»
has an equation x = X, + t', where t' = c,t. The propagation of these
jumps is governed by (22), (23), and (32), with k = 1; no special diffi-
culties will be encountered in the numerical integration procedure, as
discussed in [l]. However, when the input at x = X, involves jumps in
uz,x’ uz,t’ or SZ, a different situation arises, These discontinuities

propagate along the C; line which has an equation x = x, + ut', where
u = Cz/ c, . In general, this line does not intersect the main network
at the mesh points, as shown in Fig. 4a, This line may be replaced by
a "zig-zag line'" with discontinuous slope but passing through the regular
mesh points [4]. Numerical results indicated that although the treatment
by this approximate 'zig-zag line" gave overall good qualitative results,
the accuracy was less than satisfactory, In this paper, the exact C;
line, x = X, * put', is used, and is not replaced by any approximate lines,
At each point where this line intersects lines of the regular network,
values of the dependent variables will be calculated. Details of this
procedure, which is similar to the one used in ﬂq for the plate bending
problems, will now be given below,

We shall call the line x = X, * ut' the jump line, and introduce
a new coordinate system (a,B) which consists of the CI and CI character-~
istics as shown in Fig. d4a. The finite-difference network is then composed
of constant o and constant B lines, with constant increment é in both a

and 8. The point of intersection between the jump line and a particular




a = constant line, say a = m§ line, where m is an integer, is at

B = (-11%) né (37

In general, this B is not an integer; therefore the intersection is

not located at a regular mesh point. In calculating the values of the
variables at a regular mesh point adjacent to the jump line, three types
of net may be encountered. A net is defined as a square in the network
with each side of length 6, A net is called type I if the jump line
intersects both of the a = constant lines of the net and does not
intersect the 8 = constant lines of the net. The net ABCD in Fig. 4a,
used for the calculation of values at point B, is of type I, If the
jump line, while proceeding upwards, intersects a 8 = const. line first
and then an a = const. line of a net, then this net is of type II, such
as net KLGB, If it intersects first an a = const, line and then a

B8 = const. line, then the net is of type III, e.g., net BGHC, The
detection as to the type of a net may be accomplished as follows, For
a net with sides a = mé, a = (m+*1)§, B = né and B = (n+1)$, where m and

n are integers, it is type I if

ym=n+e, 0 s €, < 1
(38)
y(m+l) = n + €59 0<e, < 1
where y = (1-p)/(1+u). The net is type II, if
ym=n -1+ €3 0= €y < 1
(39)
y(m+l) = n + €, » 0seg, <1

17
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The net is type III, if

Ym=n + ¢ 0 s € < 1

¢ (40)

y(m+l) =n + 1 + € » 05 € < 1

At a mesh point on the jump line, each of the variables,
uz,x' uz’t, assumes two values, e,g,, uz,x (unjumped value) and
U x* [pz,il (jumped value), etc., where [hz.;] and [hz.éj are cal-
culated from (22) and (23). We shal; now discuss the finite-difference
solution of the governing equations for a type-I net., Referring to
Fig. 4b for the type-l net ABCD, it is assumed that values of the
variables at points A, E, D, and C are known from previous calculation,
Values at point F will now be determined. Draw line F-3, through
point F parallel to the C; family of curves; line F-2 is also drawn
through point F parallel to the CI family, The values at point 2 and 3
are obtained by linear interpolation, We now apply the six equations,
(35), (36), and four of the‘form of (34), evaluated at proper points,

to obtain the six unknowns u » and u, at point F.

1,x* Y1,t2 Y2,x* Yo, Y
For the characteristic equation along F-2, the jumped values at point
F must be used; for the equation along FC, unjumped values at F are
used; for the equation along FE at both points F and E, the jumped

values of u, x and u are used; for the characteristic equation along
»

2,t
F-3 as well as the two continuity equations, the unjumped values of
uz.x and uz,t at point F must be used., Having obtained the values of
of the variables at F, we may now determine those at B. Fig. 4c shows
the network necessary for the calculation of uz.x, u2,t‘ u,, ul,x’ ul't,
and u, at point B which is a regular mesh point. Again the system of six
equations is utilized, where jumped values at point F must be used. Values

at points 5, 6, and 2 are, again, determined by linear interpolation.




For the other two types of nets, similar procedures are adapted.
The proper initial conditions for this case require the specification

of u , and u along t = 0, For all the example

u u
1,t* 2,t? T1,x 2,X

problems solved in this paper, the initial conditions are

ul.x(x,O) = uz.x(x,o) = ul’t(x,O) = uz.t(x,o) =0 1)

X £ XX
1 2

At x = X1 properly posed boundary conditions require the

specification u, or Sl; and, u, or S,. The same can be said for

1 2

X =X, however, in many of the problems where x, = = we will require

regularity of the two variables at infinity.

The region between x = x, +ct and t = 0 in the physical plane

contains the trivial solutions of vanishing derivatives of u, and u,.

Along the line x = X, +ct these derivatives are also zero if the

boundary condition at x = x,, t = 0, does not include discontinuities

1?

in the functions U s By 4y OT Sl. When discontinuities in these
14 »

variables occur at x = X, t = 0, they will propagate along the line

X =X, + clt according to (22) and (23) for k = 1,

When discontinuous functions of u b ¢2 OF 52 are prescribed
»

2,x? u

at x = X, t= 0, these discontinuities will propagate along the line

X =X *+ct, according to (22) and (23) with k = 2, Within the region

between the lines x = x, *+c t and x = x

2 1+ 6t the derivatives of u,

are in general different from zero, although they vanish on the line

X = xl + Clt.

For problems with ¢, = c,, Mo special difficulties will be encountered

1

since all characteristics intersect at regular mesh points. For jump

inputs, the solution of eq. (30), instead of (22) and (23) should be used.
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IV APPLICATION TO ELASTIC WAVE PROBLEMS

A large number of problems in linear elastic wave propagation and
vibration can be arranged in the form of eqs. (1). From these unified
equations, the wave propagation velocities, Ci» and the parameter Bii’
which governs the propagation of discontinuities, are immediately known,
In the following, we shall discuss some examples in elastic wave
problems in relation td the unified equations. For the cases of n = 2,
comparison of the results from our numerical calculation with those
obtained by others will also be included. No discussion will be given
on the derivation of the various approximate wave equations; emphasis
will be placed on the analysis and solution of these equations.

A summary of some of the problems with n = 1 and n = 2 are given
in Table I and II, respectively. In these tables, the first row gives
the name of the physical problem; the second row gives the authors whose
notations, with minor modifications, have been adopted here; the rest
of the rows list the coefficients in egs. (1) and (31) that each of the
physical problems assumes, Certain notations, such as modulus of
elasticity E, Lame's constants A and G, shear correction
factor kz, plate modulus D, are standardized for all cases. The radial
space variable in cylindrical or spherical coordinates is represented

by r,

A, Problems with One Displacement Variable (n = 1)

For the cylindrical and spherical dilatational waves, the governing

equations for homogeneous media such as eq. (10) of [}], are well known,




Results of numerical calculations by method of characteristics are also
given in [I]. The cylindrical rotary equivoluminal (shear) waves in
homogeneous materials are treated by Goodier and Jahsman [I6]. The
corresponding problem for nonhomogeneous media are solved by Sternberg
and Chakravorty Eﬂ by the Laplace transform method; and by Chou and
Schaller EQ] by the method of characteristics, Solutions of the
cylindrical longitudinal equivoluminal waves may be found in ﬁﬂ. In
Table I, the corresponding equations for all these cases with variable

spatial distribution of elastic properties (nonhomogeneous) are presented.

B, Problems with Two Displacement Variables (n = 2)

Only two generalized stresses, S, and Sz, are listed for each case

1
in Table II, These are the two that may be prescribed as boundary

conditions, Additional gencralized stresses, such as M, in the plate

8
problem, usually (except the beam case) appear in the stress equations
of motion; however, they may not be prescribed as boundary conditions
and they are not needed for the solution of the problem in terms of
generalized displacements,

After the elimination of one displacement variable, the two equations
of motion of any of the n = 2 problems may be expressed as one fourth
order equation. However, from this single fourth order equation the

wave velocities and the factors B and 822 cannot be detected readily,

11
In all the numerical calculations, 150 space points are used; which
required an average computing time of 20 to 30 minutes on an IBM 7040

computer,

21
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Timoshenko Beams

The governing equations, the wave velocities, and the equation
governing the discontinuities for beams with variable cross-~sectional
area and variable elastic properties are in agreement with those
obtained by Leonard and Budiansky [2]. 1In [2], they also solved the
beam problem with two wave speeds equal by both the method of character-
istics and the method of Laplace transform, In particular, they
obtained closed form solutions for infinite beams with either step
velocity or step moment input applied at the end. The case of a uniform
cantilever beam subjected to a step velocity at the root was calculated
by the present technique; the relative difference between our numerical
results and eq. (C14) of [ 2] is less than 0,05%.

Boley and Chao R0] presented the Laplace transformation solutions
to four types of loadings applied to a semi-infinite beam, These
loadings applied at x = 0 are:

a, Step velocity and zero bending moment,

b, Step moment and zero displacement,

c. Step angular velocity and zero shear force, and

d. Step shear force and zero rotation,

These problems were solved by the present technique; our numerical results
were found to he in good agrcement with the curves of [2@ except in case
(b}, where a slight discrepancy in moment exists, as shown in Fig, 5.

Plass @3] nresented solutions to eleven types of loadings applied
to a semi-infinite beam, by using a numerical procedure similar to the
present one, lle applied various types of support conditions and impact

conditions where in every case the impact is a pulse in the form of a




half-sine wave, The problems presented in Figs, 1, 4, 6, 10, 11, 12,
and 13 of [3] were solved by the present technique. The solutions were
found to be in good agreement with those of [3] except in one case.

For the case of half-sine rotation impact with zero shear, our resulting
moment distributions are one-fourth in magnitude of those presented in

Fig, 13 of [3].

Plates

The equations in Table II for plane and cylindrical waves in plates
are based on the two-dimensional equations derived by Mindlin [7]. Chou
and Koenig [?] calculated cylindrical waves due to various axisymmetrical
loadings of a plate with a circular hole. The numerical results in Eﬂ
are satisfactory except for the case with a jump shear force input at
the hole; in which case the procedure for the calculation of jumps across
the second characteristic is not accurate., Improved results for plates
using the present technique are given in [}S]. A few curves showing the
response of a plate due to jump shear input are reproduced in Fig. 6.

for easy reference,

Bars

The equations for nonhomogeneous bars are based on the work by Mindlin
and Herrmann [8]. Miklowitz [21] presented the Laplace transform solution
to the problem of a semi-infinite bar with step axial stress and zero
velocity aﬁplied at x = 0, [iis solution was also successfully duplicated

by the present technique,

Sheets

Equations governing the propagation of dilatational waves in a plate

23



incorporating the lateral inertia effect were derived by Kane and Mindlin
[9] for two-dimensional problems. The corresponding eauations for cylindri-
cal waves were presented by Jahsman Eﬂ. In Table II, corresponding equations

for plane and cylindrical wavesin nonhomogeneous material are given,

C. Problems with “ore Than Two Displacement Variables (n > 2)

Several sets of anproximate eauations, all incorporating the rotary
inertia and shear effect, for thin cylindrical shells can all be arranged
into the forrm of eqs. (1), with n = 3, For instance, the equations derived
by Herrmann and Mirsky Dﬂ reduce to our unified form, if, in Eﬂ, the
first of (18) is multiplied bv 1/R and combined with the third multinlicd
by minus one, thc resultineg cquation contains second derivatives of u only;
the first of (18) minus the third multiplied by (-hz/IZP) rives the
corresponding equation for wx; while the second of (18) is alrcady in the
form of our (1). The three wave velocities detected from these equations,
and the equations governing the propagation of discontinuities are in
agreement with those obtained by Spillers [23], who used the corresnonding
set of first order equations, Detalled discussion of the approximations
involved in different shell theories, in terms of the present unified
approach, as well as numerical calculations, will be given in a forth-
coming paper.,

One example for the n = 4 case is the thick cylindrical shell
equations derived by Mirsky and lerrmann Eﬂ. Here, if the first two
equations of (22) in [13] are multiplied by proper constants and combined,
two equations, one containing second derivatives in wx only, the other
containing second derivatives in u only, may be obtained. Similarly,
the last two equations of (22) in ﬂi] may be combined to give two equations

each with second derivatives of one variable only.
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Another interesting problem that may be represented by the present
unified approach is the wave propagation in helical springs [}4]. In
this case there are six generalized displacement variables (n = 6),
three components of displacement and three components of rotation of
the cross-section of the spring., The theory is essentially an extension
of the Timoshenko theory for straight beams. In [14], Wittrick obtained
six stress-displacement relations, (49) and (50), and six equations of
motion in terms of stresses and displacements, (51) and (52), Substituting
his eqs. (49) and (SO).into his (51) and (52), we obtain six equations
of the form of our eqs. (1), It is interesting to note that for these
equations there are only three distinct wave velocities for the cases

where the cross-section of the spring is either square or circular.
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b. Determination of Values at Point F

¢, Determination of Values at Point B

Figure 4 The "Jump Line” in the Physical Plane
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